T2-Weighted 4D Magnetic Resonance Imaging for Application in Magnetic Resonance–Guided Radiotherapy Treatment Planning

نویسندگان

  • Joshua N. Freedman
  • David J. Collins
  • Hannah Bainbridge
  • Christopher M. Rank
  • Simeon Nill
  • Marc Kachelrieß
  • Uwe Oelfke
  • Martin O. Leach
  • Andreas Wetscherek
چکیده

OBJECTIVES The aim of this study was to develop and verify a method to obtain good temporal resolution T2-weighted 4-dimensional (4D-T2w) magnetic resonance imaging (MRI) by using motion information from T1-weighted 4D (4D-T1w) MRI, to support treatment planning in MR-guided radiotherapy. MATERIALS AND METHODS Ten patients with primary non-small cell lung cancer were scanned at 1.5 T axially with a volumetric T2-weighted turbo spin echo sequence gated to exhalation and a volumetric T1-weighted stack-of-stars spoiled gradient echo sequence with golden angle spacing acquired in free breathing. From the latter, 20 respiratory phases were reconstructed using the recently developed 4D joint MoCo-HDTV algorithm based on the self-gating signal obtained from the k-space center. Motion vector fields describing the respiratory cycle were obtained by deformable image registration between the respiratory phases and projected onto the T2-weighted image volume. The resulting 4D-T2w volumes were verified against the 4D-T1w volumes: an edge-detection method was used to measure the diaphragm positions; the locations of anatomical landmarks delineated by a radiation oncologist were compared and normalized mutual information was calculated to evaluate volumetric image similarity. RESULTS High-resolution 4D-T2w MRI was obtained. Respiratory motion was preserved on calculated 4D-T2w MRI, with median diaphragm positions being consistent with less than 6.6 mm (2 voxels) for all patients and less than 3.3 mm (1 voxel) for 9 of 10 patients. Geometrical positions were coherent between 4D-T1w and 4D-T2w MRI as Euclidean distances between all corresponding anatomical landmarks agreed to within 7.6 mm (Euclidean distance of 2 voxels) and were below 3.8 mm (Euclidean distance of 1 voxel) for 355 of 470 pairs of anatomical landmarks. Volumetric image similarity was commensurate between 4D-T1w and 4D-T2w MRI, as mean percentage differences in normalized mutual information (calculated over all respiratory phases and patients), between corresponding respiratory phases of 4D-T1w and 4D-T2w MRI and the tie-phase of 4D-T1w and 3-dimensional T2w MRI, were consistent to 0.41% ± 0.37%. Four-dimensional T2w MRI displayed tumor extent, structure, and position more clearly than corresponding 4D-T1w MRI, especially when mobile tumor sites were adjacent to organs at risk. CONCLUSIONS A methodology to obtain 4D-T2w MRI that retrospectively applies the motion information from 4D-T1w MRI to 3-dimensional T2w MRI was developed and verified. Four-dimensional T2w MRI can assist clinicians in delineating mobile lesions that are difficult to define on 4D-T1w MRI, because of poor tumor-tissue contrast.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Magnetic resonance imaging of feline eye

The purpose of this study was to investigate magnetic resonance imaging (MRI) of the normal feline eyeand optic nerves using T1-weighted and T2-weighted images. A total of 6 healthy female domestic short haircats age 2-2.5 years and weighing 3.2 ± 0.4 kg were selected. Magnetic resonance imaging data werecollected using GEMSOW (Philips) at a magnetic field strength of 1.5 T. Dorsal, sagittal, a...

متن کامل

Design and Fabrication of a Four-Dimensional Respiratory Phantom for Studying Tumor Movement in Radiotherapy with Magnetic Resonance Imaging

Introduction: In radiation therapy, determining the location of the tumor accurately during irradiation is one of the most important requirements. However, lung tumors are not fixed in a single location and move during irradiation due to respiratory motion. Due to limitations in assessing such movements, using a lung phantom can be useful and operational for their fast, easy an...

متن کامل

Cardiac and Hepatic T2*-Weighted Magnetic Resonance Imaging

Abstract Background Iron overload is the main transfusion related side effects in patients with transfusion dependent hemoglobinopathies. Severe iron deposition in tissues leads to organ dysfunction. Many organs can be affected such as heart, liver, and endocrine organs. Cardiac failure and liver fibrosis are the consequent of Iron overload in transfusion dependent hemoglobinopathy. Magne...

متن کامل

Pseudo-CT Generation from Magnetic Resonance Imaging by fuzzy look up table algorithm

Introduction: Despite growing interest in the use of magnetic resonance imaging (MRI) in the external radiotherapy design process (RT), Computer Tomography (CT) remains a gold standard and is regarded as a basic imaging modality in radiotherapy. MRI shows the high contrast in soft tissues without any radiation exposure to patients. As a result, MRI is used in functional tissue ...

متن کامل

Geometric distortion evaluation of magnetic resonance images by a new large field of view phantom for magnetic resonance based radiotherapy purposes

Background: The magnetic resonance imaging (MRI)-based radiotherapy planning method have been considered in recent years because of the advantages of MRI and the problems of planning with two images modality. The first step in MRI-based radiotherapy is to evaluate magnetic resonance (MR) images geometric distortion. Therefore, the present study aimed to evaluate system related geometric distort...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 52  شماره 

صفحات  -

تاریخ انتشار 2017